

Series 7L

Piezoresistive OEM pressure transducers with high stability in a compact design

Features

- · High long-term stability
- · Robust, compact stainless-steel housing
- · Front-flush, crevice-free welded diaphragm
- · Very high proof pressure
- · Optimised thermal behaviour

Technology

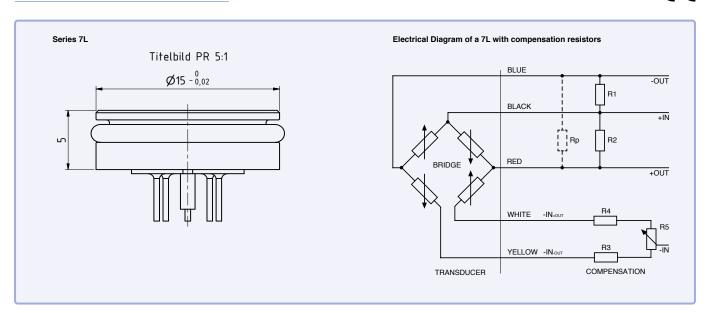
- · Insulated piezoresistive pressure sensor encapsulated in an oil-filled metal housing
- · Ideal for mounting with O-ring
- · Typical range of output signal of 160 mV / mA

Typical Applications

- OEM
- Industry
- Laboratory

Accuracy

+ 0.50 %FS


Long-term Stability

± 0,25 %FS/year

Pressure Ranges

0...5 bar to 0...200 bar

CE

For pricing or any further information, please contact Omni Instruments Ltd.

Contact Details:

Tel: +44 1382 443000 Fax: +44 1382 453197

Email: info@omni.uk.com

Mailing Address: Unit 1, 14 Nobel Road, Wester Gourdie Industrial Estate,

Dundee, DD2 4UH.

Series 7L – Specifications

Standard Pressure Ranges

Relative pres- sure	Absolute pressure	Absolute pressure	Proof pressure		Sensitivity	
PR	PAA	PA		min.	typ.	max.
05	05	05	15	24	32	40
010	010	010	30	12	16	20
020	020	020	60	6	8	10
030	030	030	90	4	5,3	6,7
050	050	050	150	2,4	3,2	4
	0100	0100		1,2	1,6	2
	0160	0160	300	0.75	4.0	4.05
	0200	0200	-	0,75	1,0	1,25
bar rel.	bar abs.	bar	bar		mV / (mA × bar)	
Zero at atmospheric	Zero at 0 bar abs.	Zero at 1 bar abs.	With reference to zero			

Performance

Accuracy @ RT (2025 °C)	± 0,25 %FS typ.	Non-linearity (BFSL), pressure hysteresis, non-repeatability	
Accuracy & FIT (2025 C)	± 0,50 %FS max.	Non-lineality (Di 3L), pressure hysteresis, hon-repeatability	
O#+-+ @ DT (00 05 00)	< ± 25 mV/mA	Uncompensated, the sensitivity value must be added for PA	
Offset @ RT (2025 °C)	< ± 2 mV/mA	Compensated with R3 or R4	
Long-term stability	≤ ± 0,25 %FS	Per year under reference conditions	
Position dependency	≤ 2 mbar	Calibrated in vertical installation position with metal diaphragm facing downwards	
Temperature coefficient TCzero pre-compensated with R1 or R2	≤±0,025 %FS/K		
Temperature coefficient sensitivity TCsens	≤ ± 0,06 %/K		
Temperature coefficient total bridge resistance TC-resistance	18003000 ppm/K		

Whilst every effort has been made to ensure the accuracy of this specification, we cannot accept responsibility for damage, injury, loss or expense from errors or omissions. In the interest of technical improvement, this specification may be altered without notice

For pricing or any further information, please contact Omni Instruments Ltd.

Contact Details:

Tel: +44 1382 443000 Fax: +44 1382 453197 Email: info@omni.uk.com **Mailing Address:** Unit 1, 14 Nobel Road, Wester Gourdie Industrial Estate,

Dundee, DD2 4UH.

Series 7L – Specifications

Temperature Ranges

Compensated temperature range	-1080 °C	
Media temperature range	-20100 °C	Ontional Tampayatuva yangaa within 40, 105 °C naasikla
Ambient temperature range	-20100 °C	Optional: Temperature ranges within -40125 °C possible
Storage temperature range	-20100 °C	

Electrical Data

Half-bridge configuration

5 5		
Constant current supply	1 mA nominal 3 mA max.	
Bridge resistance @ RT (2025 °C)	$3,5 \text{ k}\Omega \pm 20 \%$	
Electrical connection	Gold-plated pins ø 0,45 mm L = 4 mm ± 0,5 mm	Optional: Silicone wires AWG22, L = 70 mm, other lengths on request
Insulation	> 100 MΩ @ 500 VDC	

Mechanical Data

Materials in contact with media

Housing and diaphragm	Stainless steel AISI 316L	Optional: Hastelloy C-276, titanium
Seal ring	FKM (75 Shore) Ø 12 mm × 1,5 mm -20200 °C	Optional: Other materials on request

Other materials

	Pressure transducer oil filling	Silicone oil	Optional: Other oil fillings on request
--	---------------------------------	--------------	---

Further details

Diameter × height	ø 15 mm × 5 mm	See Dimensions and Options
Reference tube connection	ø 1,2 mm × 3 mm	Optional: Silicone reference tube for reference offset
Weight	approx. 4,5 g	

Dynamics

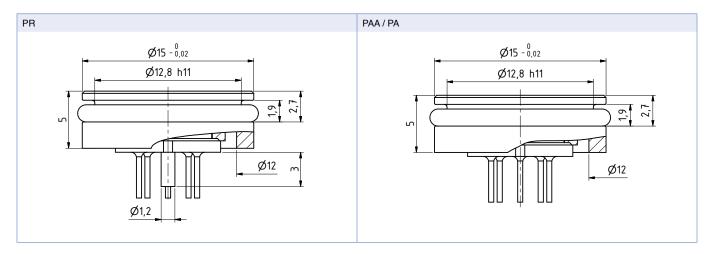
Vibration resistance	20 g, 102000 Hz, ± 10 mm	IEC 60068-2-6
Shock resistance	50 g, 11 ms	IEC 60068-2-27
Natural frequency (resonance)	> 30 kHz	
Endurance @ RT (2025 °C)	> 10 million pressure cycles	0100 %FS
Dead volume change @ RT (2025 °C)	< 2 mm ³	0100 %F5

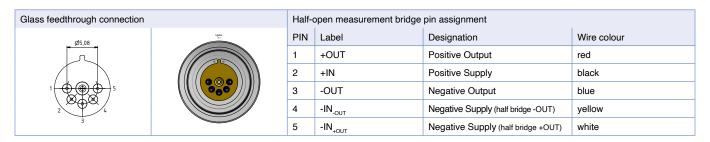
Whilst every effort has been made to ensure the accuracy of this specification, we cannot accept responsibility for damage, injury, loss or expense from errors or omissions. In the interest of technical improvement, this specification may be altered without notice

For pricing or any further information, please contact Omni Instruments Ltd.

Contact Details:

Tel: +44 1382 443000 Fax: +44 1382 453197 Email: info@omni.uk.com **Mailing Address:** Unit 1, 14 Nobel Road, Wester Gourdie Industrial Estate,


Dundee, DD2 4UH.



Series 7L – Dimensions and Options

Overview of Versions

Electrical Connection

Overview of Customer-specific Options

- · Custom pressure ranges
- Custom temperature ranges
- Custom mathematical modeling
- · Electrical connection with silicone wires
- Housing and diaphragm made of Hastelloy C-276 or titanium
- · O-Rings made of other materials
- Other oil filling types for pressure transducers: e.g. special oils for oxygen applications
- Modifications to customer-specific applications

Examples of Related Products

Series 7FL: Version with flange

Series 7LX: Pressure transducer 7L with digital compensation electronics
 Series 10L: Low-pressure transducer with maximum long-term stability

Series PD-10L: Differential pressure version

Whilst every effort has been made to ensure the accuracy of this specification, we cannot accept responsibility for damage, injury, loss or expense from errors or omissions. In the interest of technical improvement, this specification may be altered without notice

For pricing or any further information, please contact Omni Instruments Ltd.

Contact Details:

Tel: +44 1382 443000 Fax: +44 1382 453197 Email: info@omni.uk.com Mailing Address: Unit 1, 14 Nobel Road, Wester Gourdie Industrial Estate, Dundee, DD2 4UH.

Series 7L – Analysis and Characteristic Lines

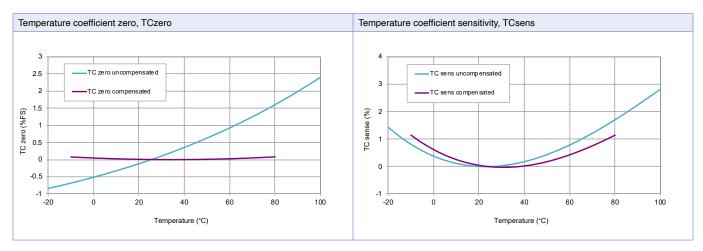
Standard Analysis

The 7L are intended for o-ring mounting and depend on the stress isolation provided by o-rings for performance within stated specifications. This installation enables the values measured during factory testing to remain valid. If the transducers are not installed free from stress, the mechanical forces may change the measured values and the stability of the pressure transducers.

				29/01
3)Temp [°C]		(5) +510 [mV]	© Comp [mV]	⁽⁷⁾ dZero [mV]
-9,5	18,5	13,3	-0,6	0,2
0,1 25,0	18,7 19,1	13,3 13,1	-0,6 -0,8	
50,2	19,8	13,0	-0,9	-0,1
79,9	20,8	12,9	-1,1	-0,2
COMP R	1 510 kO	hm ⁽⁸⁾	R3	56.0 Ohm ⁽⁸⁾
RB ZERO SENS		m ⁽⁹⁾ / ⁽¹⁰⁾ F //bar ⁽¹¹⁾	P_atm	964 bar
LIN	(40) =		(14) Lnorm	(15) Lbfsl
(12) [bar] 0,000	⁽¹³⁾ [n	nV] 0,0	[%Fs] 0,00	[%Fs] -0,01
2,500	4		0,02	0,01
5,000 82,1			0,00 -0,02	0,00 -0,01
7,500 123,1 10,000 164,1			-0,02	-0,01
Long Term	Stability Ok	16)		

Key

- 1. Type (PA-10L) and measuring range (10 bar) of pressure sensor
- 2. Serial number of pressure sensor
- 3. Actual test temperatures
- 4. Uncompensated zero offset
- 5. Zero offset values with compensation resistor R1 (+) or R2 (-) connected
- 6. Zero offset with calculated compensation resistors connected
- 7. Temperature zero error with compensation resistors connected
- 8. Calculated compensation resistor values R1 or R2 (TCzero) and R3 or R4 (offset)
- 9. RB: Bridge resistance at room temperature
- 10. Calculated offset with compensation resistors R1 or R2 and R3 or R4 connected
- 11. Sensitivity of pressure sensor at room temperature
- 12. Pressure test points
- 13. Signal at pressure test points
- 14. Non-linearity (best straight line through zero)
- 15. Non-linearity (best straight line)
- 16. Results of long-term test
- 17. Sensor traceability information
- 18. Insulation test
- 19. Excitation (constant current)
- 20. Date of test ----- Test equipment


Notes

- The indicated specifications apply only for constant current supply of 1 mA. The sensor must not be supplied more than 3 mA.

 The output voltage is proportional to the current supply (excitation). If excitation other than 1mA used, the output signal will deviate from the calibrated values.
- If exposed to extreme temperatures, the compensation resistors should have a temperature coefficient of < 50 ppm/°C. Sensor and resistors can be exposed to different temperatures.
- Fine adjustment of zero with R5 potentiometer (20 Ω) is possible. In addition, a maximum TC-sensitivity can be guaranteed on request or the value for the compensation resistor (Rp) can be indicated. See Electrical Diagram of a 7L with Compensation on page 1.

Characteristic Lines

Examples of typical characteristic curves of the temperature coefficients, normalised at 25 °C, uncompensated vs. compensated

Whilst every effort has been made to ensure the accuracy of this specification, we cannot accept responsibility for damage, injury, loss or expense from errors or omissions. In the interest of technical improvement, this specification may be altered without notice

For pricing or any further information, please contact Omni Instruments Ltd.

Contact Details:

Tel: +44 1382 443000 Fax: +44 1382 453197

Email: info@omni.uk.com

Mailing Address: Unit 1, 14 Nobel Road, Wester Gourdie Industrial Estate,

Dundee, DD2 4UH.

Series 7L – Analysis and Characteristic Lines

Mathematical Compensation Model

The KELLER pressure transducers of series 7L can be ordered with an optional mathematical compensation model.

The compensation model is a mathematical formula that helps to calculate the compensated pressure value of the pressure transducer. Both the pressure signal and the temperature signal of the pressure transducer are incorporated into the calculation. Polynomial functions are used as the basis for this mathematical model.

The pressure transducers are characterised in the factory in order to produce the compensation model. This involves measuring pressure and temperature signals at various pressure and temperature levels. Comparing the measured values with the known pressure and temperature values enables the calculation of the compensation coefficients of the pressure transducer. These compensation coefficients are made available to the customer along with the respective pressure transducer.

Whilst every effort has been made to ensure the accuracy of this specification, we cannot accept responsibility for damage, injury, loss or expense from errors or omissions. In the interest of technical improvement, this specification may be altered without notice

For pricing or any further information, please contact Omni Instruments Ltd.

Contact Details:

Tel: +44 1382 443000 Fax: +44 1382 453197 Email: info@omni.uk.com **Mailing Address:** Unit 1, 14 Nobel Road, Wester Gourdie Industrial Estate,

Dundee, DD2 4UH.