

Flow Rate Tables for MAG910/E Flow Meters

	Flowrates [I/s]						Flowrates [m3/h]					
DN	Q _{1%}	Q _{5%}	Q_N	Q _{50%}	Q _{100%}	Q _{MAX}	Q _{1%}	Q _{5%}	Q_N	Q _{50%}	Q _{100%}	Q_{MAX}
10	0,01	0,04	0,20	0,39	0,79	0,98	0,03	0,14	0,80	1,41	2,83	3,53
15	0,02	0,09	0,50	0,88	1,77	2,21	0,06	0,32	2,00	3,18	6,36	7,95
20	0,03	0,16	0,90	1,57	3,14	3,93	0,11	0,57	3,20	5,65	11,31	14,14
25	0,05	0,25	1,40	2,45	4,91	6,14	0,18	0,88	5,00	8,84	17,67	22,09
32	0,08	0,40	2,20	4,02	8,04	10,05	0,3	1,5	8,00	14,5	29,0	36,2
40	0,1	0,6	4,0	6,3	12,6	15,7	0,5	2,3	13,0	22,6	45,2	56,6
50	0,2	1,0	6,0	9,8	19,6	24,5	0,7	3,5	20,0	35,3	70,7	88,4
65	0,3	1,7	9,0	16,6	33,2	41,5	1,2	6,0	35,0	59,7	119,5	149,3
80	0,5	2,5	14,0	25,1	50,3	62,8	1,8	9,0	50,0	90,5	181,0	226,2
100	0,8	3,9	20,0	39,3	78,5	98,2	3	14	80	141	283	353
125	1	6	30,0	61	123	153	4	22	150	221	442	552
150	2	9	50,0	88	177	221	6	32	200	318	636	795
200	3	16	100	157	314	393	11	57	300	565	1131	1414
250	5	25	150	245	491	614	18	88	500	884	1767	2209
300	7	35	200	353	707	884	25	127	800	1272	2545	3181
350	10	48	300	481	962	1203	35	173	1000	1732	3464	4330
400	13	63	400	628	1257	1571	45	226	1300	2262	4524	5655
500	20	98	600	982	1963	2454	71	353	2000	3534	7069	8836
600	28	141	800	1414	2827	3534	102	509	3000	5089	10179	12723
700	38	192	1000	1924	3848	4811	139	693	4000	6927	13854	17318
800	50	251	1200	2513	5027	6283	181	905	5000	9048	18096	22620
900	64	318	1500	3181	6362	7952	229	1145	6000	11451	22902	28630
1000	79	393	2000	3927	7854	9817	283	1414	8000	14137	28274	35340

 $Q_{1\%} \hspace{0.5cm}$ - minimum applicable flowrate (minimum flowrate with guaranteed accuracy)

 $Q_{5\%}$ $\;\;$ - recommended minimum flowrate (minimum flowrate with best accuracy)

Q_N - recommended nominal flowrate (expected working flowrate)

 $Q_{50\%}$ $\;$ - recommended maximum flowrate (maximum flowrate for industrial use)

 $Q_{100\%}$ $\,\,$ - maximum applicable flowrate (maximum flowrate with guaranteed accuracy)

 Q_{MAX} - maximum applicable overload $(Q_{125\%})$ (flowmeter is still measuring)

Table 2: M910 (M910E) flowrates

A sensor diameter should be chosen to keep real flowrate between $Q_{5\%}$ and $Q_{50\%}$, because in this range the flowmeter has the best accuracy.