PROGRAMMABLE F/I - F/F CONVERTER

PRECON TYPE 5225

5225

Programmable
f/l - f/f Converter
O
O

回

TABLE OF CONTENTS

Warning 18
Safety instructions. 20
EC declaration of conformity 22
How to dismantle system 5000 23
In general 24
Applications 25
Technical characteristics 25
Input 25
Analogue output 25
Digital output(s) 26
Relay outputs 26
Status indication. 26
Electrical specifications 27
Order 31
Block diagram 31
5225 connection to Loop Link 32

Australia / Asia Pacific Office
Tel +61 (0)282 442363 Fax +61 (0)294 751278 info@omniinstruments.com.au www.omniinstruments.com.au

UK / Europe Office Tel: +44 (0)8459000 601 Fax: +44 (0)845 9000602 info@omniinstruments.co.uk www.omniinstruments.co.uk

USA / Canada Office
Tel +1-866-849-3441
Fax +1-866-628-8055 info@omniinstruments.net www.omniinstruments.net

WARNING

This module is designed for connection to hazardous electric voltages.
Ignoring this warning can result in severe personal injury or mechanical damage.
To avoid the risk of electric shock and fire, the safety instructions of this manual must be observed and the guidelines followed. The specifications must not be exceeded, and the module must only be applied as described in the following.
Prior to the commissioning of the module, this manual must be examined carefully.
Only qualified personnel (technicians) should install this module. If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

WARNING

Until the module is fixed, do not connect hazardous voltages to the module.
The following operations should only be carried out on a disconnected module and under ESD safe conditions:

Dismantlement of the module for setting of dipswitches
and jumpers.
General mounting, connection and disconnection of wires. Troubleshooting the module.

Repair of the module and replacement of circuit breakers must be done by PR electronics A/S only.

SYMBOL IDENTIFICATION

Triangle with an exclamation mark: Warning / demand. Potentially lethal situations.

The CE mark proves the compliance of the module with the essential requirements of the directives.

ㅁ The double insulation symbol shows that the module is protected by double or reinforced insulation.

SAFETY INSTRUCTIONS

DEFINITIONS

Hazardous voltages have been defined as the ranges: 75 to 1500 Volt DC, and 50 to 1000 Volt AC.
Technicians are qualified persons educated or trained to mount, operate, and also troubleshoot technically correct and in accordance with safety regulations.
Operators, being familiar with the contents of this manual, adjust and operate the knobs or potentiometers during normal operation.

RECEIPT AND UNPACKING

Unpack the module without damaging it and make sure that the manual always follows the module and is always available. The packing should always follow the module until this has been permanently mounted.
Check at the receipt of the module whether the type corresponds to the one ordered.

ENVIRONMENT

Avoid direct sunlight, dust, high temperatures, mechanical vibrations and shock, as well as rain and heavy moisture. If necessary, heating in excess of the stated limits for ambient temperatures should be avoided by way of ventilation.
All modules fall under Installation Category II, Pollution Degree 1, and Insulation Class II.

MOUNTING

Only technicians who are familiar with the technical terms, warnings, and instructions in the manual and who are able to follow these should connect the module.
Should there be any doubt as to the correct handling of the module, please contact your local distributor or, alternatively,

PR electronics A/S, Lerbakken 10, DK-8410 Rønde, Denmark, tel: +45 86372677.

Mounting and connection of the module should comply with national legislation for mounting of electric materials, i.a. wire cross section, protective fuse, and location. Descriptions of input / output and supply connections are shown in the block diagram and side label.

The following apply to fixed hazardous voltages-connected modules:
The max. size of the protective fuse is 10 A and, together with a power switch, it should be easily accessible and close to the module. The power switch should be marked with a label telling it will switch off the voltage to the module.

CALIBRATION AND ADJUSTMENT

During calibration and adjustment, the measuring and connection of external voltages must be carried out according to the specifications of this manual. The technician must use tools and instruments that are safe to use.

NORMAL OPERATION

Operators are only allowed to adjust and operate modules that are safely fixed in panels, etc., thus avoiding the danger of personal injury and damage. This means there is no electrical shock hazard, and the module is easily accessible.

CLEANING

When disconnected, the module may be cleaned with a cloth moistened with distilled water.

LIABILITY

To the extent the instructions in this manual are not strictly observed, the customer cannot advance a demand against PR electronics A/S that would otherwise exist according to the concluded sales agreement.

EC DECLARATION OF CONFORMITY
As manufacturer
PR electronics A/S
Lerbakken 10
DK-8410 Rønde
hereby declares that the following product:

Type: 5225

Name: Programmable f/I - f/f converter
is in conformity with the following directives and standards:
The EMC Directive 2004/108/EC and later amendments

EN 61326-1

For specification of the acceptable EMC performance level, refer to the electrical specifications for the module.

The Low Voltage Directive 2006/95/EC and later amendments

EN 61010-1

The CE mark for compliance with the Low Voltage directive was affixed in the year: 1997

Rønde, 11 January 2010

Kim Rasmussen
Manufacturer's signature

HOW TO DISMANTLE SYSTEM 5000

First, remember to demount the connectors with hazardous voltages. By lifting the bottom lock, the module is detached from the DIN rail as shown in picture 1. Then, by lifting the upper lock and pulling the front plate simultaneously the PCB is removed as shown in picture 2.
Switches and jumpers can now be adjusted. By opening the front, the programming connector is accessible as shown in picture 3.

Picture 1: Separation from DIN rail.

Picture 3: Access to programming connector.

Picture 2: Removal of PCB.

PROGRAMMABLE F/I - F/F CONVERTER

$$
5225
$$

- Pulse conditioning
- Frequency generator
- Concurrent f / l and f / f function
- Analogue current and voltage output
- PNP / NPN output, optional relays
- Programmable by PC and Loop Link

Supply voltage:	24 VDC
INPUT RANGE:	
Frequency:	0... 20000 Hz
Sensor types:	NAMUR, tacho, NPN, PNP, TTL, SO

OUTPUT RANGE:

Current and voltage output:	$0 \ldots .20 \mathrm{~mA} / 0 . . .10 \mathrm{~V}$
Relay outputs:	$0 \ldots . .20 \mathrm{~Hz}$
NPN and PNP output as f/f:	$0 \ldots .1000 \mathrm{~Hz}$
NPN and PNP output as generator:	$0 . . .20000 \mathrm{~Hz}$

IN GENERAL

By way of a standard PC and the Loop Link programming kit, the PRecon 5225 $f / I-f / f$ Converter is configured acc. to the requested function.
Alternatively, the 5225 may be delivered fully-configured acc. to your specifications, see the options index in the data sheet.
Typical pulse sources are flow meters, tacho generators, mechanical switches, or inductive proximity sensors.

APPLICATIONS

The f / l function performs frequency to current and voltage conversion.
The output can be programmed to show period meaning that the input frequency can be converted to a linear time signal.
The digital outputs are used as e.g. a frequency watch for speed control or as a window comparator having one status between 2 limits and the opposite status outside these limits.

The f/f function can be used for pulse division or multiplication and as a buffer collecting fast pulse trains. The input pulses are calculated, counted in a buffer, and sent to the output as a pulse train with the programmed pulse width.

The concurrent f / l and f / f functions enable a scaled digital output signal in conjunction with the analogue output.

The frequency generator function is used as e.g. a time base or clock generator.

TECHNICAL CHARACTERISTICS

INPUT

Programmable input for standard pulse generator connection.
Normally, the auxiliary supply and trigger level follow the sensor type, but these can be programmed acc. to other values.
At contact input, the 50 Hz filter should be applied.
The PRecon 5225 is protected against polarity reversal on input and supply.

ANALOGUE OUTPUT

The analogue current and voltage output can be scaled acc. to your choice in relation to the digital input. Max. zero offset is 50% of selected measurement range. Programmable response time.
Short circuit-protected output.
When both current and voltage signals are used simultaneously, the mA loop to ground passes through the internal shunt.

Standard voltage output (pin 12) is obtained by leading the current signal (pin 13) through an internal shunt resistor (pin 12). At current signals in the ranges $0 . .1 \mathrm{VDC}$, a 50Ω shunt (JP1) is applied; in the ranges $0 . . .10 \mathrm{VDC}$, a 500Ω shunt (JP2) is applied.

DIGITAL OUTPUT(S)

Both NPN / PNP and relay outputs can be set up with delayed on and off. The action on the outputs can be inverted, and the hysteresis can be set acc. to your specifications.
At power-up, shifts on the outputs can be delayed for up to 999 s .
NPN and PNP outputs for external relay, electromechanical counter, PLC input, or equivalent load.
The outputs are current-limited by way of PTC resistors.
Active output is established by connecting the NPN to the PNP output (jumper pins 22-23).

RELAY OUTPUTS

The PRecon 5225 can be delivered with 2 relay outputs that are programmed individually.

STATUS INDICATION

The 5225 is equipped with 4 front LEDs.
fin: \quad Indicates an active input (non-active at NPN input)
Dig. out. 1: Indicates active NPN or relay 1 output.
Dig. out. 2: Indicates active relay 2 output.
Error: Indicates sensor error at NAMUR input.

ELECTRICAL SPECIFICATIONS

Specifications range:
$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Common specifications:
Supply voltage 19.2...28.8 VDC
Internal consumption 1.7 W
Max. consumption 3.5 W
Power-up delay (digital outputs) 0... 999 s
Warm-up time 30 s
Communications interface Loop Link
Signal / noise ratio Min. 60 dB
Response time, analogue.

\qquad
$<60 \mathrm{~ms}+$ periodResponse time, digital output$<50 \mathrm{~ms}+$ period
Response time, concurrent f / l and f / f $<80 \mathrm{~ms}+$ period
Calibration temperature $20 . . .28^{\circ} \mathrm{C}$
Temperature coefficient. $< \pm 0.01 \%$ of span $/{ }^{\circ} \mathrm{C}$
Linearity error $< \pm 0.1 \%$ of span
Effect of supply voltage change < 0.002\% of span / \%V
Auxiliary voltages:
NAMUR supply 8.3 VDC $\pm 0.5 \mathrm{VDC} / 8 \mathrm{~mA}$
SO supply 17 VDC / 20 mA
NPN / PNP supply.5.17 VDC 20 mA
Special supply (programmable) 5... 17 VDC / 20 mA
EMC immunity influence $< \pm 0.5 \%$
Max. wire size

\qquad
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded wire
Screw terminal torque 0.5 Nm
Air humidity < 95\% RH (non-cond.)
Dimensions (HxWxD) $109 \times 23.5 \times 130 \mathrm{~mm}$
DIN rail type DIN 46277
Protection degree. IP20
Weight 190 g

Input:

General:	
Measurement range	0... 20 kHz
Min. measurement range	0.001 Hz
Max. offset...	90\% of selected max. frequency
Low cut off ..	0.001 Hz
Min. pulse width (without filter)	$25 \mu \mathrm{~s}$
Min. period (without filter)	$50 \mu \mathrm{~s}$
Max. frequency (without filter)..................	20 kHz
Min. pulse width (with filter)	10 ms
Min. period (with filter)..........................	20 ms
Max. frequency (with filter)......................	50 Hz
Programmable trig-level..........................	0.025..6.5 V (nom.)
Trig-level LOW.......................................	$>50 \%$ of trig high
	- 50 mV
NAMUR input acc. to DIN 19234:	
Trig-level LOW	$\leq 1.2 \mathrm{~mA}$
Trig-level HIGH	$\geq 2.1 \mathrm{~mA}$
Input impedance	1000Ω
Sensor error detection (only for NAMUR)	
Breakage ...	$\leq 0.1 \mathrm{~mA}$
Short circuit...	$\geq 7.0 \mathrm{~mA}$
Response time	$\leq 400 \mathrm{~ms}$
Tacho input:	
Trig-level LOW.	$\leq-50 \mathrm{mV}$
Trig-level HIGH	$\geq 50 \mathrm{mV}$
Input impedance	$\geq 100 \mathrm{k} \Omega$
Max. input voltage..................................	80 VAC pp
NPN / PNP input:	
Trig-level LOW.......................................	$\leq 4.0 \mathrm{~V}$
Trig-level HIGH	$\geq 7.0 \mathrm{~V}$
Input impedance, standard	$3.48 \mathrm{k} \Omega$
Input impedance, special version	13.3 k $/$ / NPN

TTL input:

Trig-level LOW $\leq 0.8 \mathrm{VDC}$
Trig-level HIGH ≥ 2.0 VDC
Input impedance
$\geq 100 \mathrm{k} \Omega$
SO input acc. to DIN 43 864:
Trig-level LOW $\leq 2.2 \mathrm{~mA}$
Trig-level HIGH $\geq 9.0 \mathrm{~mA}$
Input impedance 800Ω

Analogue output:

Current output:

Signal range
0... 20 mA

Min. signal range... 5 mA
Max. offset... 50\%
Signal dynamics .. 16 bit
Updating time.. 20 ms
Updating time for
concurrent f/l and f/f 40 ms
Load (max.).. $20 \mathrm{~mA} / 600 \Omega$ / 12 VDC
Load stability ... < $\pm 0.01 \%$ of span / 100Ω
Current limit.. $\leq 23 \mathrm{~mA}$

Voltage output through internal shunt:

Signal range ... 0... 10 VDC
Min. signal span
250 mV
Max. offset 50% of selected max. value
Load (min.) $500 \mathrm{k} \Omega$

Digital outputs (NPN / PNP):

Imax. source.. 30 mA
Imax. sink 130 mA
$V_{\text {max. }}$. 28.5 VDC
f/f converter output:
Signal range
0... 1000 Hz

Multiplicator / Divisor 1.0000... 1000000

Min. pulse width $500 \mu \mathrm{~s}$
Max. pulse width 999 ms
Max. duty cycle 50\%

Frequency generator:

Min. period
$50 \mu \mathrm{~s}$
Max. frequency 20 kHz
Duty cycle. \qquad 50\%

Relay output:

Isolation, test / operation
3.75 kVAC / 250 VAC

ORDER

Type	Version		Output	
5225	Standard $: A$	Analogue + NPN / PNP	$: 1$	
			Analogue + relay output	

BLOCK DIAGRAM

5225 CONNECTION TO LOOP LINK

Displays

Programmable displays with a wide seection of inputs and outputs for display of temperature, volume and weight, etc. Feature linearisation, scaling, and difference measurement functions for programming via PReset software.

Exinterfaces Interfaces for analogue and digital signals as well as HART ${ }^{\circledR}$ signals between sensors / I/P converters / frequency signals and control systems in Ex zone 0, 1 \& 2 and for some modules in zone 20, 21 \& 22.

Isolation Galvanic isolators for analogue and digital signals as well as $\mathrm{HART}^{\circledR}$ signals. A wide product range with both loop-powered and universal isolators featuring linearisation, inversion, and scaling of output signals.

Temperature A wide selection of transmitters for DIN form B mounting and DIN rail modules with analogue and digital bus communication ranging from applicationspecific to universal transmitters.

Universal PC or front programmable modules with universal options for input, output and supply. This range offers a number of advanced features such as process calibration, linearisation and auto-diagnosis.

