USB-AD
Data acquisition system (USB)

Measurement & Control.
Quite simple.
Record and output signals with the USB-AD: The USB data acquisition system is ideal for universal applications and due to the small size perfectly suitable for mobile use - just plug in and get going!

Extra small. Extra red.
Extra low-priced.
The unique idea of the USB-AD: the data acquisition system is accommodated in the D-Sub connector housing. Not only the size is extra small but also the price.

16 Ain. 1 AOut. 12 bit. ±5V.
Voltages in the ±5V range are connected at 16 analog inputs. Sampling is done with 12 bit resolution and 10Hz per channel. The ±5V output can be used for analog control with 12 bit accuracy.

4 DIn/DOut each. 1 counter.
Digital states are recorded or controlled at four digital inputs and outputs each. Digital inputs are sampled time-synchronously with the analog inputs.

Plug & Play.
The connection to the PC is realized via USB. The USB-AD provides all typical USB features (e.g. Plug&Play, Hot-Plug). Up to 127 devices can be connected and installed during operation.

Powered by USB.
The device is supplied with power via the USB interface. This reduces cabling efforts to a minimum and makes mobile measurements a lot easier.

Open for everyone.
Widely supported: The data acquisition system can be used under Windows® 7/XP as well as under MAC OS X, FreeBSD and Linux. The complete software for installation and programming of the USB-AD is included for free.

NextView®4. Try for free.
The DAQ system is supported by NextView® 4, the software for data acquisition and analysis. A fully functional 30-day trial is included with delivery to directly test the functionality of the USB-AD.

Accessory.
Makes everything so easy.
Use the demo board ZU-DBD featuring various operating controls and sensors to generate 16 analog signals and record them with the USB data acquisition system.
1 Start-up procedure

Install the bcmcm driver package (see chapter 4.1.1). Connect the USB cable of the USB-AD to the USB-interface of the PC and start the Plug&Play installation (see chapter 4.1.2). The device is supplied with power via the USB-connection.

If necessary, further software components can be installed now, as described in chapter 4.

2 Pin assignment

Das USB data acquisition system features 16 analog inputs, 1 analog output and 4 digital inputs and outputs each (low: 0V..0.7V; high: 3V..5V). An auxiliary voltage (e.g. for sensor supply) is provided at pin 17.

Signals are connected at the 37-pin D-Sub female connector of the USB-AD.

<table>
<thead>
<tr>
<th>Pin</th>
<th>USB-AD</th>
<th>Pin</th>
<th>USB-AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AIn 1</td>
<td>16</td>
<td>AIn 16</td>
</tr>
<tr>
<td>2</td>
<td>AIn 2</td>
<td>17</td>
<td>V_\text{USB} (4.5V; max. 20mA)</td>
</tr>
<tr>
<td>3</td>
<td>AIn 3</td>
<td>18</td>
<td>AOut 1</td>
</tr>
<tr>
<td>4</td>
<td>AIn 4</td>
<td>19</td>
<td>n. c.</td>
</tr>
<tr>
<td>5</td>
<td>AIn 5</td>
<td>20–27</td>
<td>AGND (analog ground)</td>
</tr>
<tr>
<td>6</td>
<td>AIn 6</td>
<td>28</td>
<td>DIN 1</td>
</tr>
<tr>
<td>7</td>
<td>AIn 7</td>
<td>29</td>
<td>DIN 2</td>
</tr>
<tr>
<td>8</td>
<td>AIn 8</td>
<td>30</td>
<td>DIN 3</td>
</tr>
<tr>
<td>9</td>
<td>AIn 9</td>
<td>31</td>
<td>DIN 4</td>
</tr>
<tr>
<td>10</td>
<td>AIn 10</td>
<td>32</td>
<td>DOut 1</td>
</tr>
<tr>
<td>11</td>
<td>AIn 11</td>
<td>33</td>
<td>DOut 2</td>
</tr>
<tr>
<td>12</td>
<td>AIn 12</td>
<td>34</td>
<td>DOut 3</td>
</tr>
<tr>
<td>13</td>
<td>AIn 13</td>
<td>35</td>
<td>DOut 4</td>
</tr>
<tr>
<td>14</td>
<td>AIn 14</td>
<td>36, 37</td>
<td>DGND (digital ground)</td>
</tr>
<tr>
<td>15</td>
<td>AIn 15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The pin assignment does not correspond to the bcmcm standard because the digital channels are also accessible at the 37-pin D-Sub female. Therefore, the analog ground for Analog In 9..16 may not be directly available if using the USB-AD together with some bcmcm connection systems (e.g. AAR, ZU37BB/-CB/-CO)!
- The max. potentials to ground must not exceed ±7V. Any channel overload may influence measurements of other channels and may lead to wrong values.
- The digital lines are protected by 1kΩ resistors. If the input voltage is not within the permitted voltage range of 0V..5V, the device may be damaged.
- The digital ground (DGND) is connected with the PC ground.
3 Interfacing examples for the digital lines of the USB-AD

The following basic connection examples demonstrate the use of the digital inputs and outputs. The pin assignment of the 37-pin D-Sub female connector is described in chapter 2.

3.1 Interfacing examples for digital inputs

The 3.9kΩ pull-down resistor sets the input to low if no voltage is applied there.

3.1.1 Connecting an optocoupler

Optocouplers provide optimum protection at each input line. With them, it is possible to connect higher voltages and to protect the hardware from being destroyed.

In this regard, please also see application examples of the optocoupler you use.

⚠️ Optocoupler boards with 8 or 16 inputs are available at bmcm.

3.1.2 Connecting a push-button / switch

Please make sure to use a push-button with debounce protection, because otherwise several pulses might be recorded.

The 3.9kΩ pull-down resistor is absolutely necessary to create a defined low signal!
3.1.3 Connecting a voltage divider

If connecting a DC voltage higher than 5V, a voltage divider must be used so that 5V at the maximum are applied at the device input. Exceeding the 5V input voltage might cause damages to the device.

The relation between the two resistors to be used is calculated with the following formula:

\[\frac{U}{U_1} = \frac{R_1 + R_2}{R_1} \]

Input voltages less than 5V are also sufficient (high \geq3V).

3.2 Interfacing examples for digital outputs

Serial resistors in the output lines limit the current and protect the hardware from being destroyed.

3.2.1 Connecting an LED

Only so-called low-current LEDs can be used, because they already work with 1mA current.

Please also observe the total current listed in the technical data (see chapter 6).
3.2.2 Connecting a relay

A connected relay is ideal to switch higher currents. Since the field coil of the relay requires a higher current than provided by the measurement system at one line, a transistor is connected ahead.

Relay boards with 8 relays or 16 semiconductor relays are available at bmcm.

3.2.3 Connecting a lamp

A transistor can be used to switch higher loads. The selected transistor must comply with the maximum switchable current.

The figure on the right shows an application with a maximum current of 100mA.
4 Software installation

All software and documentation available for the USB-AD are integrated on the "Software Collection" CD included with delivery. When inserting the CD, a CD starter opens automatically (otherwise: start openhtml.exe).

Change to the product page of the USB-AD by selecting the entry "Products" in the CD starter and then the hardware ("USB-AD") listed under the interface "USB".

For detailed information about installing or operating the software, please see the corresponding manuals. The Adobe Acrobat Reader is required to open the documentation in PDF format.

You can run the installation directly from CD. If your browser prevents this, first save the setup program to hard disc before running it separately.

<table>
<thead>
<tr>
<th>Software</th>
<th>Software product</th>
<th>Notes</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device driver</td>
<td>BMCM-DR</td>
<td>1. install driver package to hard disc</td>
<td>IG-BMCM-DR</td>
</tr>
<tr>
<td></td>
<td>(driver package)</td>
<td>2. Windows® Plug&Play installation</td>
<td>(driver installation manual)</td>
</tr>
<tr>
<td>Programming</td>
<td>STR-LIBADX</td>
<td>ActiveX control for hardware independent</td>
<td>IG-LIBADX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>programming</td>
<td>(installation / programming</td>
</tr>
<tr>
<td></td>
<td>STR-LIBADX-EX</td>
<td>example programs for LIBADX ActiveX control</td>
<td>manual)</td>
</tr>
<tr>
<td></td>
<td>SDK-LIBAD</td>
<td>SDK with example programs for C/C++ on</td>
<td>UM-LIBAD4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Windows®, MAC OS X, FreeBSD, Linux</td>
<td>(installation / programming</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>manual)</td>
</tr>
<tr>
<td>Operating program</td>
<td>NV4.5</td>
<td>measuring software NextView®4 available</td>
<td>DS-NV4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in the Standalone versions:</td>
<td>(data sheet)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lite: "slim" version with basic functions</td>
<td>UM-NV4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pro: full version with complete functional</td>
<td>(user manual)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>range</td>
<td>"First steps" in the NextView®4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Analysis: version for the analysis of</td>
<td>demo project (displayed when</td>
</tr>
<tr>
<td></td>
<td></td>
<td>stored measuring data</td>
<td>first starting the software)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NextView®4 can be used for free as a fully</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>functional 30-day trial version. After</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>purchasing the software, all projects,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>measurement files, and settings can still</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>be used.</td>
<td></td>
</tr>
</tbody>
</table>

4.1 Driver installation

Under Windows®, the driver installation is always required for the USB-AD. Only then additional software can be installed. To make sure the installation is done correctly, please follow the instructions in the order as described below.

Under MAC OS X, FreeBSD and Linux, driver installation is not necessary.

4.1.1 Install driver package

The prior installation of the bmcm driver package BMCM-DR to the hard disc of your PC makes the driver search for Windows® much easier. Especially in case of driver updates, only the new driver package has to be installed, the hardware automatically uses the new version.

The link to install the driver package is located on the USB-AD product page of the "Software Collection" CD.
4.1.2 Plug&Play installation

As soon as the USB-AD is connected to the PC, the system announces the new hardware. Since the driver package has been copied to hard disc before, the hardware will be installed automatically under Windows® 7. Under Windows® XP, the automatic hardware detection is started by selecting the following option:

- **Windows® 7**: no specifications required
- **Windows® XP**: "Install the software automatically" (SP2: do not connect with Windows® Update!)

4.1.3 Check installation

The entry "Data Acquisition (BMC Messysteme GmbH)" is included in the Windows® Device Manager after successful installation displaying the installed bmcm hardware. To open the Device Manager, proceed as follows:

- **Windows® 7**: Start / Control Panel / System and Security / System / Device Manager
- **Windows® XP**: Install Start / Control Panel / System / TAB "Hardware" / button "Device Manager"

Double click the USB-AD to show its properties. For general information, any existing device conflicts and possible sources of error, see TAB "General".

4.2 Programming

Programming the USB-AD with Visual Basic®, Delphi®, Visual C++™ under Windows® 7/XP is possible with the hardware independent STR-LIBADX. It is available on the USB-AD product page of the "Software Collection" CD. After installation, the ActiveX control must be loaded into the respective programming environment.

- **Visual Basic®**: menu "Project / Components", entry "LIBADX Object Library 4.0"
- **Delphi®**: menu "Components / Import ActiveX", entry "LIBADX Object Library 4.0"

If you select the entry STR-LIBADX-EX listed directly under the installation program of the corresponding ActiveX control, you can install example programs (with source code) demonstrating how to apply the ActiveX control.

Programming the USB-AD under Max OS X and Unix (FreeBSD, Linux) with C/C++ is done by means of the LIBAD4 programming interface.

The SDK-LIBAD for the respective operating system (also Windows®) is included on the product page of the USB-AD. For further information about how to integrate the SDK in the programming environment, please see the corresponding programming manual UM-LIBAD4.

Using the LIBAD4 requires advanced programming experience!

4.3 Using USB-AD with NextView®4

Install the fully functional trial of the professional software NextView®4 for measurement data acquisition and processing to directly test the features and functions of the USB-AD.

The setup program NV4.5 is available on the product page of the card. When first starting the software, request a license number with the option "Request 30 days free trial version" being checked and select your DAQ system (USB-AD) in the following dialog "Device Setup".

The data sheet and the start project of NextView®4 contain first instructions about how to install and operate the program. For detailed information, an online help is provided.

The trial is valid for 30 days after requesting the license number. If a license is not purchased within this period, the functional range of NextView®4 will be considerably cut down!
5 Important notes for using the USB-AD

- The device is only suitable for extra-low voltages - please observe the relevant regulations! For reasons relating to EMC, it must only be used in closed PC housings. ESD voltages at open lines may cause malfunction.
- Only use non-solvent detergents for cleaning. The product is designed to be maintenance-free.
- Signal cables are connected at the 37-pin D-Sub female connector – preferably use shielded cables. For best possible interference suppression, connect shield at one end. Close open inputs if necessary.
- The device ground and the chassis are electrically connected to the chassis of the PC, which is usually also connected to ground. Be sure to avoid ground loops since they will cause measuring errors!
- PCs (notebooks) which are not grounded often produce high potentials to earth at the USB socket so that safe operation cannot be guaranteed. In this case, connect the measuring system to earth.
- The gain is adjusted to even values. Therefore, only 4000 values (for 12 bit) of the full range of the converter are used. As a result, the measuring ranges are slightly larger (e.g. ±5.12V) than the indicated measuring ranges so that overranges can be recognized. The AD converter of the USB-AD has a code noise of up to ±1 LSB
- The device must not be used for safety-relevant tasks. With the use of the product, the customer becomes manufacturer by law and is therefore fully responsible for the proper installation and use of the product. In the case of improper use and/or unauthorized interference, our warranty ceases and any warranty claim is excluded.

Do not dispose of the product in the domestic waste or at any waste collection places. It has to be either duly disposed according to the WEEE directive or can be returned to bmcm at your own expense.

6 Technical data

(typical at 20°C, after 5min., +5V supply)

- **Analog inputs**
 - Channels // Resolution: 16 single-ended // 12 bit (2.5mV)
 - Sampling rate // Abs. accuracy: up to 500 values/second can be sampled (depending on software and PC) // ±5mV
 - Measuring range // Noise: ±5V // ±1 LSB
 - Surge protection: max. ±12V (when turned on), ±7V (when turned off), max. ±20mA in total of all input channels!
 - Input resistance: 1MΩ (with PC turned off: 1kΩ) // 5pF
 - Zero shift // Gain drop: ±50ppm/C // ±50ppm/C
 - Frequency accuracy // Frequency drift: ±50ppm/sec // max. ±50ppm/sec

The values for accuracy always relate to the respective measuring range. Errors might add at worst.

- **Analog output**
 - Voltage range // Output current: 1 voltage output with ±5V // 1mA max.
 - Resolution // Accuracy: 12 bit // typ. ±4 LSB, max. ±20 LSB
 - Zero shift // Gain drop: ±50ppm/C // ±50ppm/C

- **Digital inputs/outputs**
 - Channels // Level: 4 input and 4 output channels // CMOS/TTL compatible (low: 0V..0.7V; high: 3V..5V)
 - Input resistance: min. 1MΩ // 1kΩ (with PC turned off)
 - Current pick-up per output pin: 1mA (with app. 4V level), max. 2.5mA (with app. 3V level)
 - Surge protection: max. ±5.5V, protected with 1kΩ, max. max. ±20mA in total of all channels!

- **General data**
 - Power supply: +4.5V..+5.5V from USB connection to the PC, max. 100mA
 - USB interface: USB 2.0 compatible (full speed)
 - Connections (analog + digital): all channels at 37-pin D-Sub female
 - CE standards: EN61000-6-1, EN61000-6-3, EN61010-1; for decl. of conformity (PDF) visit www.bmcm.de
 - RoHS and WEEE compliant // WEUE Reg.-No. DE75472248
 - EN61000-6-1, EN61000-6-3, EN61010-1; for decl. of conformity (PDF) visit www.bmcm.de
 - Max. permissible potentials: 60V DC acc. to VDE, max. 1kV ESD on open lines
 - Temperature ranges: -25°C...+70°C
 - Relative humidity: 0-90% (not condensing)
 - Dimensions // Protection type: 71 x 45 x 16 mm³, USB cable app. 1.1m // IP50
 - Delivery: device in plastic housing with USB cable, "Software Collection" CD, description
 - Available accessories (optional): demo board ZU-DBD, connecting cables ZUKA37SB, ZUKA37SS, 37-pin D-Sub plug ZU37ST, connector boards ZU37BB/CB/CO
 - Warranty: 2 years from date of purchase at bmcm, claims for damages resulting from improper use excluded

- **Software**
 - Software on CD (included): ActiveX Controls LIBADX (hardware independent) for programming on Windows® 7/XP, LIBAD4 SDK for C/C++ programming on Windows® 7/XP, Mac OS X, Unix (FreeBSD, Linux); trial version of the measuring software NextView®4 to test and operate the hardware
 - NextView®4 (optional): professional software (versions: Professional, Lite) for the acquisition and analysis of measurement data on Windows® 7/XP

Manufacturer: BMC Messsysteme GmbH. Subject to change due to technical improvements. Errors and printing errors excepted. Rev. 5.0 12/05/2012